Leaders in Data Annotation for Natural Language

Natural language is complex and full of nuance. Our decades-long experience in speech and text annotation, along with our coverage of over 300+ languages and dialects, means we provide your AI with the training data it needs to interpret all aspects of language — from basic mechanics to context, dialogue, sentiment and emotion.

Recorded speech

Data Annotation Services for Speech and Text

With the support of our customizable annotation tooling, we offer extensive services for interpreting and processing text and speech. Don’t see a service you need, or unsure where to start? Contact us for more information.

Transcription and Diarization

We convert recorded speech of all types and languages into text. Whether you need verbatim transcripts or transcripts cleaned of filler words and noise, added speaker or noise identification with timestamps (diarization), or even phonetic transcriptions, we provide you best-in-class transcriptions the way you want them, when you need them.

Reconocimiento de entidades

Text annotation converts a text into a dataset to use in Natural Language Processing. To interpret texts, we break them down and structure them by key elements, or entities. This establishes a basis for annotators to label elements by category such as places, dates, brands or prices, delineate relationships between words and phrases, and apply many other labeling methods.

Reconocimiento de intención

Annotators read a written input or listen to a voice recording and classify it according to what the speaker or writer wants to achieve. Intent recognition is useful for call centers, chatbots and intelligent agents since it provides relevant information about a user’s needs and requests.

Relevancia de los datos

Data relevance, or search relevance, assesses whether a system like a search engine or intelligent assistant gives a response to a user that matches what the user requested. Annotators check whether the response is relevant to the user request, and the request itself to see whether the inputs are unclear or unexpected.

Análisis de sentimientos y emociones

Sentiment and emotion analysis seeks to understand the human context behind a text or speech recording. Sentiment analysis determines whether a segment of speech or text is positive, negative or neutral and can help gauge customer opinion or brand reputation. Emotion annotation provides deeper insight into whether a speaker is feeling anger, happiness, sadness, fear or surprise.

Evaluación de pronunciación y dialecto

Annotators can determine whether the the pronunciation of a word or sentence is correct, based on standard pronunciation or dialect variants. They can also identify various dialects within a spoken language. Pronunciation and dialect assessment can be performed on human or synthetic speech.

Anotación de IA conversacional

Conversational AI combines natural language processing (NLP) and machine learning to allow applications to speak and respond in a human-like way — for example chatbots or voice assistants. For training chatbots, annotators carry out natural conversations as if they were an agent or customer and role play entire scenarios with the AI, from greeting to sign-off. For voice assistants, annotators listen to collected audio data and validate, categorize, transcribe or correct machine-generated pretranscriptions of conversations. In both cases, they rate the conversational quality based on helpfulness or other client criteria.

Traducción y localización

While translation involves re-writing a given message from one language to another, localization incorporates relevant cultural context and language connotation to adapt the full meaning of a message for a target region or cultural group. This makes the message more appealing and familiar to local readers. Annotators can measure the estimated accuracy of a predictive translation or localization against a human-generated translation, and can also identify any possible mistranslations that might result from automated translation.

Moderación de contenido

Our annotators can screen, monitor and filter inappropriate user-generated content, such as abusive, fake, explicit or harmful data, following specific client guidelines and platform requirements. They can categorize data that, for example, contains or suggests self-harm, violence, abuse, or drug references, and remove these specific media.

Contenido recomendado


¿Qué es el procesamiento del lenguaje natural?

Natural language processing (NLP) is the process which allows a computer program to understand language as it is normally spoken and written. The use of machine learning models in NLP enables computers to better understand human language.


Lanzamiento y ampliación de la transcripción de vídeos en 24 idiomas y dialectos

Un importante cliente de servicios tecnológicos necesita 2.000 horas de vídeo en 24 idiomas transcritos por humanos y quiere lanzar los 24 equipos a la vez. Sigma.AI cumple.


The Fundamentals of Audio Annotation Services

Audio annotation is about adding metadata like tags, descriptions or labels to identify what is happening in an audio file. It’s the foundation for building the models used to analyze spoken words, speed up customer responses, or recognize spoken human emotions.

Let’s Work Together to Build Smarter AI

Ya sea que necesite ayuda para obtener y anotar datos de capacitación a escala, o si necesita una estrategia de anotación completa para satisfacer sus necesidades de capacitación en IA, podemos ayudarlo. Póngase en contacto para obtener más información o para configurar su prueba de concepto.