Data Privacy and GDPR for Data Annotation

While the demand for data is growing, processing of personal data increasingly requires compliance with more stringent, multi-jurisdiction, and sometimes overlapping laws and regulations. Standardizing interpretation and enforcement are essential among the 27 EU states and their neighbors to ensure that AI technology can continue to evolve while protecting personal data. The European General Data Protection Regulation (GDPR) is the strictest data protection regulation out there right now, and to say it can be difficult to interpret would be an understatement.

The essence of GDPR is that personal information has to be used in a way that protects the privacy of the person/data subject and keeps that person fully informed of how their data is to be used both now and in the future (if at all). Each person has the right to decide how his or her personal data is utilized, including the ability to not have their data used at all.

In summary, GDPR requires:

  • Full control of personal data, and clarity about what the data is going to be used for. At the moment of data collection, the company must explain clearly this use of personal data to the subject, so the person can make an informed choice on whether or not to consent to the data collection.
  • A limit on the amount of data collection to the minimum necessary for achieving the goal for which the data is going to be collected and processed.
  • Data subjects to be informed about who is the data controller, how to contact the data controller, the legal basis for processing the data, and what categories of personal data are going to be processed. The data subject’s rights also must be made explicitly clear in plain language (non-technical, no jargon).
  • The company to document how the data protection requirements are met.

GDPR compliance requires expert legal advice in the area and potentially outsourcing the data collection and annotation to GDPR-compliant companies, such as Sigma, which have specialized personnel to undertake personal data projects.

A company that is GDPR compliant is also well positioned to be compliant with the California Consumer Privacy Act (CCPA).


IA y aprendizaje automático

Los desafíos y oportunidades de la IA generativa

Una entrevista con el Dr. Jean-Claude Junqua Parece que casi a diario aparecen artículos sobre Chat GPT, Bard y Generative AI (Gen AI). Nos pusimos al día

Nubes de tormenta
Datos de entrenamiento

Establecimiento de datos reales sobre el terreno

Los datos reales son datos objetivos y demostrables que se utilizan para entrenar, validar y probar modelos. Está directamente relacionado con la tarea que se debe realizar. La IA no puede fijar los objetivos. Es el trabajo de los humanos.

Recent Posts

Los desafíos y oportunidades de la IA generativa

Los desafíos y oportunidades de la IA generativa

An interview with Dr. Jean-Claude JunquaIt seems like articles about Chat GPT, Bard, and Generative AI (Gen AI) appear almost…
¿Qué es el procesamiento del lenguaje natural?

¿Qué es el procesamiento del lenguaje natural?

El procesamiento del lenguaje natural (PLN), para abreviar, se refiere a la manipulación del habla y el texto mediante software.
Establecimiento de datos reales sobre el terreno

Establecimiento de datos reales sobre el terreno

Ground truth data is the objective, provable data used to train, validate and test models. It is directly related to…